SPECTROPHOTOMETRIC QUANTIFICATION OF NITRITE AND NITRATE IN CURED PROCESSED MEAT

*Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University.
** Regional Center for Food and Feed, Agricultural Research Center.
*** Food Inspection Laboratory, Animal Health Research Institute.

ABSTRACT

A total of 115 samples of different cured meat products – locally processed and imported ones – were purchased from various groceries and supermarkets in Egypt then analyzed for their contents of both nitrite and nitrate by the aid of spectrophotometer and expressed as mg/kg (ppm). The surveyed samples consisted of 25 canned beef (9 locally processed plus 16 imported ones), 20 locally processed beef sausage, 15 locally processed pastrima, 10 locally processed beef luncheon, 5 imported canned beef luncheon, 20 canned sausage (8 locally processed and 12 imported ones), 10 imported chicken luncheon, in addition to 10 locally processed chicken luncheon samples. Spectrophotometric analyses quantified the range (minimum – maximum) & mean ± S.E. levels of nitrite in the tissues of locally processed and imported canned beef samples as 4.35 - 43 & 14.59±4.13 mg/kg and 4.07 - 78.37 & 38.94±6.98 mg/kg, respectively, while similar findings for the nitrate were 37.92 - 160.3 & 99.86±5.55 mg/kg in the tissues of locally processed and imported canned chicken samples. Meanwhile, the mean levels ± S.E. of sum nitrite and nitrate in the analyzed tissues of both locally processed beef luncheon and imported canned beef luncheon samples were 5.22 & 36.73, 1.99 & 2.99, and 18.99 & 63.29 mg/kg; whereas the highest amounts of such residues were 75.5 & 75.78, 74.7 & 59.56, and 131.7 & 96.29 mg/kg; meanwhile the mean levels ± S.E. of these findings were 30.63 ± 8.28 & 59.22 ± 8.32, 32.81 ± 6.4 & 21.78 ± 11.16, and 63.43 ± 12.46 & 81 ± 6.81 mg/kg in the same samples, respectively.

INTRODUCTION

Processed meat and poultry are popular and extremely perishable food. Nitrites and nitrates are used in meat curing because they stabilize attractive red meat color, retard some spoilage and food poisoning anaerobic microorganisms, latency the development of oxidative rancidity, and share to flavor development (Jiménez-Colmenero and Solana, 2009). Nitrites/nitrates control the growth of spores, particularly from Clostridium botulinum. These spores are a real concern in the meat industry; in order to they can survive...
normal heat processing. Under the suitable conditions, they can produce vegetative cells, which can give a lethal toxin. Nitrates undergo a chemical reaction and are reduced to nitrites. Then, nitrites react with meat protein (myoglobin), and are converted to nitrosomyoglobin (bright red). When exposed to the heat of cooking, nitrosomyoglobin is converted to nitrosohemochrome (pink pigment) (Hyytia et al., 1997). Control and legislation of the adding of preservatives is essential both to assure their effectiveness and because in unsuitable amounts and conditions these meat additives can have adverse health hazards. The present study was planned for quantitative estimation of both nitrite and nitrate levels in such marketable products; either locally processed or imported ones.

MATERIALS AND METHODS

(A) Collection and preparation of the samples:

A total 115 samples of locally processed & imported cured beef and chicken products - consisted of 25 canned beef (9&16), 20 beef sausage (20&0), 15 pastirma (dried beef) (15&0), 10 beef luncheon (10&0), 5 canned beef luncheon (0&5) besides 20 canned chicken sausage (8&12) and 10 samples every of canned chicken luncheon (0&10) and chicken luncheon (10&0), respectively - purchased from different markets in several Egyptian provinces, then individually packed in a clean polyethylene bags, marked and transferred to the laboratory of Regional Center for Food and Feed /Agricultural Research Center , Cairo/ Egypt wherein they were analyzed for their contents of nitrite and nitrate by the aid of spectrophotometer according to Sen and Donaldson (1978).

Each of the aforementioned samples was represented by 10 g homogenized with 40 ml distilled water by using a blender. The volume of the resultant homogenate was completed to 500 ml after adding distilled water. The obtained diluted homogenate was placed in hot - air oven at 90 - 95°C / 20 min then filtered through 24 cm - filter paper (whatman, No.1).The filtered and diluted homogenate – for every sample - was submitted for quantification of their nitrite and nitrate contents.

(B) Quantification of nitrite levels in the samples:

Twenty milliliters from the filtered and diluted homogenate – from each sample - was placed in 50 ml volumetric flask and adding 2.5 ml of sulphanilamide (p - aminobenzene sulfonamide) reagent were added followed by 2.5 ml of NED reagent (N - (1 - naphthyl) – ethylene - diamine dihydrochloride) after 5 minutes then completed to 50 ml with distilled water and left for 15 minutes in the dark. Then was placed in cuvette (5 ml) and was detected spectrophotometrically at 540 nm. The purple color - appeared as a result of Griess reaction (diazo compound formation) against blank of 45 mL water and 2.5 mL of sulphanilamide reagent and 2.5 mL of NED reagent. Residual nitrite level was determined by comparison with the prepared standard curve.

Nitrite content expressed as NaNo₂ =

\[
\text{C} = \frac{\text{M} \times 25008}{\text{M} \times \text{XV}}
\]

C = concentration of sodium nitrite in mg/L
read from calibration curve that corresponds with the absorbance of the solution prepared from the sample.

M = mass in grams of sample taken.
V= volume in milliliters of aliquot portion of filtrate taken for test.
(C) Quantification of nitrate levels in the samples:

Nitrate is reduced to nitrite in the presence of cadmium granules - packed in a glass column (Wood et al., 1967). The obtained nitrite level for each sample was determined spectrophotometrically - as described before. The higher quantity than before for each sample was transformed into nitrate quantity by multiplying by a factor of 1.23.

Statistical analysis: The values given in each product were the mean value of three replicates.

Table (1): Nitrite and nitrate contents in cured meat products (n = 115 for all samples)

<table>
<thead>
<tr>
<th>Types of analysed meat products and their samples'numbers (n)</th>
<th>Nitrite levels mg/kg (ppm)</th>
<th>Nitrate levels mg/kg (ppm)</th>
<th>Sum of nitrite and nitrate levels mg/kg (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Mean ± S.E.</td>
</tr>
<tr>
<td>Locally processed corned beef (9)</td>
<td>4.35</td>
<td>43</td>
<td>14.59±4.13</td>
</tr>
<tr>
<td>Imported corned beef (16)</td>
<td>4.07</td>
<td>78.37</td>
<td>38.94±6.98</td>
</tr>
<tr>
<td>Locally processed beef sausage (20)</td>
<td>6.65</td>
<td>82</td>
<td>28.72±4.34</td>
</tr>
<tr>
<td>Locally processed pastirma (15)</td>
<td>2.03</td>
<td>69</td>
<td>22.35±4.96</td>
</tr>
<tr>
<td>Locally processed beef luncheon (10)</td>
<td>5.22</td>
<td>75.5</td>
<td>30.63±8.28</td>
</tr>
<tr>
<td>Imported canned beef luncheon (5)</td>
<td>36.73</td>
<td>75.78</td>
<td>59.22±8.32</td>
</tr>
<tr>
<td>Locally processed canned chicken sausage (8)</td>
<td>7.46</td>
<td>47.08</td>
<td>27.54±4.54</td>
</tr>
<tr>
<td>Imported canned chicken sausage (12)</td>
<td>18.46</td>
<td>64.11</td>
<td>39.21±3.61</td>
</tr>
<tr>
<td>Imported canned chicken luncheon (10)</td>
<td>21.69</td>
<td>99.52</td>
<td>45.86±9.37</td>
</tr>
<tr>
<td>Locally processed chicken luncheon (10)</td>
<td>11.21</td>
<td>58.4</td>
<td>35.96±5.55</td>
</tr>
</tbody>
</table>

n= number of analysed samples Min. = minimum Max. = maximum S.E. = standard error

N.B. The maxima for nitrite and nitrate limits in cured meat are 150 & 250mg/kg (ppm), respectively (Jiménez-Colmenero and Solana, 2009)
RESULTS & DISCUSSION

Data in both Table (1) and Figure (A) revealed presence of both nitrite and nitrate residues in all 115 cured meat samples 100% tested in this work. Concerning the tested locally processed corned beef samples the nitrite levels were detected as a mean ± standard error 14.59 ± 4.13 with a range of 4.35 – 43 mg/kg, whereas these findings for nitrate contents were 22.8 ± 2.64 and 13.91 - 40.58 mg/kg in the same samples, resulted in sum of nitrite and nitrate levels in such samples were 37.39 ± 4.5 and 23.91 - 62.2 mg/kg, respectively. On the other hand both nitrite and nitrate levels were analyzed in imported corned beef samples by levels of 38.94 ± 6.98, 4.07 - 78.37, 43.88 ± 6.62 and 12.32 - 102.5 mg/kg, consecutively, showed sum of nitrite and nitrate as 82.82 ± 9.2 and 30.77 - 141.9 mg/kg in the same samples. The aforementioned data showed the contents of each of nitrite and nitrate in imported corned beef samples were approximately twice more than those found in locally processed corned beef samples. The type of meat used and the packaging technique affect nitrite contents in the finished products (Aksu et al., 2005), there were significant varieties between the nitrite and nitrate contents of cured meat products produced by different companies (Sancak et al., 2008). The meat product nitrite contents may probably be a sequence of microbial activity, this hold the view reported by Wolff.
and Wasserman (1972), who reported that the nitrite reducing bacteria may increase nitrite level in meat products by reduction of their nitrate content. By comparison, the range of nitrite levels in locally processed corned beef samples in agreement approximately with that estimated by Dennis et al. (1990) as 1.5 – 41.5 mg/kg. Whereas higher mean nitrite levels were estimated by Nassif (1989) as 58.95 mg/kg. These variations may be due to freezing temperatures, which considered as an important reduction of residual nitrite in cured meat products such as corned beef. Residual nitrite contents were reduced almost half after 24 h of storage at -18 °C (Wootten et al., 1985), nitrite levels decreased by 50-65% during manufacture and thermal processing. On the other hand approximate equal mean nitrite value of imported corned beef samples obtained by El – Nawawi et al. (1998) as 49.76 mg/kg and Saad et al. (2013) as 42.3 mg/kg, while the similar equals mean value for nitrate contents estimated by Farag and Abd El – Fatah (2011) as 39.82mg/kg.

Regarding the analyzed locally processed beef sausage samples the nitrite levels were quantified as a mean ± S.E. 28.72±4.34 with a range of 6.65 – 82 mg/kg, whereas similar findings for nitrate contents were 40.6±5.94 and 8.93 - 113.01 mg/kg in the such samples, resulted in sum of nitrite and nitrate levels in the same samples were 69.33±7.92 and 16.49 - 138.7 mg/kg, respectively. On contrary, the equal mean values of nitrite quantities agreed with that reported by Honikel (2008) as 17.9 mg/kg and Pereira et al. (2011) as 35.6 mg/kg, meanwhile higher mean nitrite values were detected by Samaha (1986) as 52.36 mg/kg, while lower mean values were detected by Sancak et al. (2008) as 11.48 mg/kg. The lower nitrite content in fresh sausage could be return to the reduced amount of nitrite and nitrate used in sausage production and, also other coloring ingredients that may be used to produce the attractive and desirable meat product color (Attall, 1997). Meanwhile approximate equal mean value for the sum of nitrite and nitrate in such samples was quantified by Shehata and Attia (1998) as 76.49 mg/kg. The net changes in the nitrite and nitrate levels in sausage related to the balance between nitrite oxidation, reduction reactions, and nitrite binding to proteins, lipids and other meat components (Honikel, 2008).

Concerning the tested locally processed pastirma samples the nitrite levels were detected as a mean ± standard error 22.35±4.96 with a range of 2.03- 69 mg/kg, whereas similar findings for nitrate quantities were 54±10.42 and 0.76 - 114.25 mg/kg in the same samples, resulted in sum of nitrite and nitrate levels in such samples were 76.35±10.06 and 18.99 - 142.71 mg/kg, successfully. By comparison, similar mean values for nitrite residues were detected by Soyt emiz and Ozenir (1996) as 15.95 mg/kg and Sancak et al. (2008) in Turkey as 12.53 mg/kg. The higher mean values were obtained by El – Sayed (1998) as 314 mg/kg, in Egypt, while lower mean values were reported by EL – Khateib et al. (1987) as 12 mg/kg in Turkish pastirma On the other hand approximate equal mean values for nitrate residues in the same samples were estimated by Sancak et al. (2008) as 58.54 ppm in Turkish pastirma and Farag and Abd El – Fatah (2011) as 62.54 mg/kg in Egypt. Meanwhile higher mean values quantified by Soyt emiz and Ozenir (1996) as 80.02 mg/kg in Bursa. High nitrite levels in pastirma could be explain by that, the product is marketed as raw salt dry meat product without any exposure of heat treatment, also salt used at curing procedure may be contaminated with nitrite and nitrate salts, pastirma has longer curing times that, allowed nitrite dissipation and nitrate conversion to nitrite (USDA "United States Department of Agriculture" and FSIS "Food Safety and Inspection...
Regarding the locally processed beef luncheon samples the nitrate levels were detected as a mean ± standard error 30.63±8.28 with a range of 5.22 – 75.5 mg/kg, whereas these findings for nitrate contents were 32.81±6.4 and 1.99 - 74.7 mg/kg in the same samples, resulted in sum of nitrate and nitrate levels in such samples were 63.43±12.46 and 18.99 - 131.7 mg/kg, respectively. On the other hand both nitrite and nitrate levels were analyzed in imported canned beef luncheon samples by levels of 59.22±8.32, 36.73 - 75.78, 21.78±11.16 and 2.99 - 59.56 mg/kg, successfully, showed sum of nitrite and nitrate as 81±6.81 and 63.29 - 96.29 mg/kg in such samples. The higher mean values were quantified - in Egypt - by El – Sayed (1998) as 204 mg/kg, while lower value for the sum of nitrite and nitrate contents was detected by Hna et al. (1972) as 39 mg/kg at the beginning of storage and determined that +5°C – cold storage. The largest decline is obtained during the manufacturing up to the end of the heating procedure, cooking time and duration of storage affected nitrite residues (Food Standards Agency, 1998).

On the other hand, the similar mean nitrite values of imported canned beef luncheon were supported by that estimated by Nassif (1989) as 32.19 mg/kg and El – Nawawi et al. (1998) as 45.5 mg/kg. Meanwhile higher mean nitrite value was estimated by Farag and Abd El – Fatah (2011) as 159.96 mg/kg, but lower mean value was obtained by Abd El – Daym (2005) as 3.69 mg/kg. This variation due to nitrite and nitrate residues were lower during the storage time (Dogruer and Guner, 2005), there were variations in the similar meat products results produced by different companies (Sancak et al., 2008). And also the approximate equal mean value for nitrate in the same samples found by Farag and Abd El – Fatah (2011) as 28.52 mg/kg.

Regarding the tested locally processed canned chicken sausage samples the nitrite quantities were quantified as a mean ± standard error 27.54±4.54 with a range of 7.46 –47.08 mg/kg, whereas these findings for nitrate quantities were 16.22±4.6 and 7.5 - 44.8 mg/kg in such samples, resulted in sum of nitrite and nitrate levels in the same samples were 43.77±7.96 and 22.06 - 91.88 mg/kg, respectively. On the other hand both nitrite and nitrate levels were estimated in imported canned chicken sausage samples by levels of 39.21±3.61, 18.46 - 64.11, 29.07±7.36 and 2.65 - 93.78 mg/kg, consecutively, showed sum of nitrite and nitrate as 68.28±7.07 and 43.51 - 132.08 mg/kg in the same samples. The previous data showed the contents of each of nitrite and nitrate in imported canned chicken sausage samples more than those found in locally processed canned chicken sausage. These results in nitrite contents of locally processed canned chicken sausage were supported by that obtained by and El – Nawawi et al. (1998) as 30.9 mg/kg, while lower mean value was detected by Abd El – Daym (2005) as 9.7 mg/kg. These mean value results in nitrite contents of imported canned chicken sausage were supported by that obtained by Hassan (1997) as 42.91 mg/kg (in canned meat) and El – Nawawi et al. (1998) as 30.9 mg/kg (in 40 canned meat samples). Where increasing the quality of meat products, reducing the nitrite contents over time, it is best that they are at least consumed after 7-10 days from production time. (Khodadady et al., 2012).

Concerning the analyzed locally processed chicken luncheon samples the nitrite levels were detected as a mean ± standard error 35.96±5.55 with a range of 11.21 –58.4
mg/kg, whereas these findings for nitrate contents were 37.92±9.05 and 1.06 - 99.81 mg/kg in the same samples, resulted in sum of nitrite and nitrate levels in such samples were 73.88±6.94 and 47.36 - 120.98 mg/kg, respectively. On the other hand both nitrite and nitrate levels were quantified in imported canned chicken luncheon samples by levels of 45.86±9.37, 21.69 - 99.52, 49.55±14.55 and 12.65 - 149.76 mg/kg, successfully, showed sum of nitrite and nitrate as 95.43±16.03 and 46.59 - 198.36 mg/kg in the same samples.

The aforementioned data showed the contents of each of nitrite and nitrate in imported canned chicken luncheon samples more than those found in locally processed chicken luncheon samples, this may be due to the longer storage period in imported canned chicken luncheon, cure accelerators, variations in packaging method and type (Pegg and Shahidi, 2000). On contrary, approximate equal mean values of nitrite levels in locally processed chicken luncheon were supported by those obtained by Sen and Baddoo (1997) as 28 mg/kg, as 31 mg/kg in 1993-1995 and as 28 mg/kg in 1996 (in Canadian cured meat products), meanwhile the lower mean values were estimated by White (1975) as 10 ppm (in cured meat samples), the nitrite content in the finished cured meat products was usually nearly 10-20% of the first added amount (Cassens, 1995).

On the other hand the nearly similar range of nitrite contents in imported canned chicken luncheon was estimated Bernal - Jorres et al. (1987) by 23.76-105.4 ppm, in Cuba (in some cured meat products) and nearly similar mean values was obtained by Hassan (1997) as 42.91 mg/kg (in canned meat).

The decline in the residual nitrite contents obtained in this work due to oxidation to nitrate, beside its chemical conversion to nitric oxide, which is highly reactive and binds to myoglobin and other meat components. Meanwhile, an excess of nitrite quantities would cause feedback inhibition of nitrate reductase, and also causing higher nitrate levels (Stahnke, 1995).

CONCLUSION AND RECOMMENDATIONS

In spite of none of the surveyed cured meat products samples possessed nitrite or nitrate level more than their limits recommended by (Jiménez-Colmenero and Solana, 2009) as 150 & 250 mg/kg, respectively, the future quantitative surveillance for both nitrite & nitrate residues in Egypt must be continuous for ensuring the safety and the good keeping quality for these products.

REFERENCES

الملخص العربي
التقدير الحكمي للنيتريت والنيترات بواسطة مقياس الطيف الضوئي في
اللحوم المعالجة المصنعة

أ.د. محمد محمد إبراهيم العازري
د. حسن علي محمد موفق

قسم الرقابة الصحية على الأغذية - كلية الطب البيطري - جامعة المنصورة

المركز الإقليمي للأغذية والآفات - مركز البحوث الزراعية

عمل فحص صحة الأغذية - معهد بحوث صحة الحيوان

تم تجميع إجمالي مائة وخمسة عشرgadoة عنية من مختلفة منتجات اللحوم المعالجة، تلك المصنعة محلياً والمستوردة والتي
تم شرائها من مختلف محلات البقالة والسوبر ماركت المتاحة بمصر، وتُحليل محتواها لكل من النيتريت والنيترات
بواطعة جهاز مقياس الطيف الضوئي وعبر تحليل كيلوجرام/ كيلو جرام (جزء من المليون). العينات التي شملتها الدراسة
تكونت من خمس وعشرون من سنابات اللحوم البقرية المكشوفة (تسعة مصنعة محلياً بالإضافة إلى ستة عشرة مستوردة منها)،
عشرون من سنابات اللحوم البقرية المكشوفة محلياً، خمس عشرة من سنابات اللحوم البقرية المكشوفة من مصنع محلياً، خمس
من سنابات لانشون اللحم البقري المستورد المكشوف، عشرون من سنابات لانشون اللحم الدجاجي المحلى (ثمانى عينات
محلية الصنع بالإضافة إلى اثنان عشرة عنية مستوردة)، اثنتي عشرة من لانشون لحم الدجاج المكشوف، بالإضافة إلى
عشر من عينات لانشون لحم الدجاج المكشوف محلياً.

حدد مقياس التحليل الطيفي الضوئي النطاق (الحد الأدنى – الحد الأقصي) والقيمة المتوسطة (حُدّد مدى العيار لمحتوى
النيتريت في سنابات اللحوم البقرية المكشوفة والمستوردة و قدره 0.23 و 14.05 & 14.05 ± 2.88 ميليجرام/كلو جرام و
4.007 ± 2.88 ميليجرام/كلو جرام، على التوالي، بينما وجدت هذه القيم لمحتوى النيتريت تلك العينات وقردها
13.91 & 22.34 ميليجرام/كلو جرام، على التوالي، وقد كان
مجمعاً متوسطياً كل من النيتريت والنيترات قدره 23.91 & 22.34 ميليجرام/كلو جرام في عينات اللحوم
البقري المكشوفة محلياً، يناسب 141.9 & 22.34 ميليجرام/كلو جرام في عينات اللحوم البقرية
المعالة المصنعة، على التوالي.

أسفرت تقنيات التحليل المذكورة سابقاً عن الحد الأدنى، الحد الأقصي، ومتوسط القيم (حُدّد مدى العيار لمحتوى
النيتريت وقدرها 0.23 و 28.72 ميليجرام/كلو جرام؛ لمحتويات النترات قدرها 1.38، 8.30، 10.30، 10.30، 10.30، 10.30
مليجرام/كلو جرام؛ ومحتويات مجموع كل من النيتريت والنيترات و 1.38، 8.30، 10.30، 10.30، 10.30، 10.30
مليجرام/كلو جرام، و 4.92 ± 2.26 ميليجرام/كلو جرام/نيترات، و 1.38، 1.38، 1.38، 1.38، 1.38، 1.38
مليجرام/كلو جرام، و 4.92 ± 2.26 ميليجرام/كلو جرام محتويات النترات، و 1.38، 1.38، 1.38، 1.38، 1.38، 1.38
مليجرام/كلو جرام، و 4.92 ± 2.26 ميليجرام/كلو جرام في عينات اللحوم البقرية
المعالة المصنعة، على التوالي.
وقد وجدت الكميات الأقل لكل من النيتريت، النترات، ومجموع كل منها بالنسبة عينات كل من لأنشون لحم البقري والمصنع محلياً وعينات لأنشون لحم البقري المعلم مستورد وقدرها 29.99%، و9.99%، و0.22%، و21.99%، و0.99%، و0.98%، و0.92%، و0.97%، و0.96%، وم Eleven Milligram/ Kilogram; بينما وجدت الكميات الأعلى لنفس المتبقيات تلك النتائج وقدرها 29.99%، و0.99%، و0.98%، و0.92%، و0.97%، و0.96%، و0.95%، و0.94%، و0.93%، و0.92%، و0.91%، و0.9%، و0.88%، وم Eleven Milligram/ Kilogram، على الترتيب.

وكم كما كشفت أنسجة عينات سجق لحم الدواجن المصنع محلياً عن مدى محتوى النيتريت، النترات، ومجموع كل منها وقدرها 7.84%، و0.75%، و0.06%، و0.68%، و0.66%، و0.63%، و0.59%، و0.57%، و0.55%، و0.53%، و0.51%، و0.49%، و0.47%، و0.46%، و0.44%، و0.43%، و0.41%، و0.39%، و0.38%، و0.36%، و0.34%، و0.33%، و0.31%، و0.29%، و0.27%، و0.25%، و0.23%، و0.21%، و0.19%، و0.17%، و0.15%، و0.13%، و0.11%، و0.09%، و0.07%، و0.05%، و0.03%، و0.01%، و0.0%.

وقد أظهرت النتائج التحليل الطيفي لعينات لأنشون لحم الدواجن المعلم المستورد عن النيتريت والمدي (الحد الأدنى – الحد الأقصى) وقدرها 40.86% - 0.99%، و9.99% - 0.98%، وم Eleven Milligram/ Kilogram للمحتوي النيتريت بيهما 5.99% - 0.99%، و0.98% - 0.97%، و0.96% - 0.95%، و0.94% - 0.93%، و0.92% - 0.91%، و0.9% - 0.88%، و0.86% - 0.84%، و0.82% - 0.81%، و0.79% - 0.78%، و0.76% - 0.75%، و0.74% - 0.73%، و0.72% - 0.71%، و0.7% - 0.69%، و0.68% - 0.67%، و0.66% - 0.65%، و0.64% - 0.63%، و0.62% - 0.61%، و0.6% - 0.59%، و0.58% - 0.57%، و0.56% - 0.55%، و0.54% - 0.53%، و0.52% - 0.51%، و0.5% - 0.49%، و0.48% - 0.47%، و0.46% - 0.45%، و0.44% - 0.43%، و0.42% - 0.41%، و0.4% - 0.39%، و0.38% - 0.37%، و0.36% - 0.35%، و0.34% - 0.33%، و0.32% - 0.31%، و0.3% - 0.29%، و0.28% - 0.27%، و0.26% - 0.25%، و0.24% - 0.23%، و0.22% - 0.21%، و0.2% - 0.19%، و0.18% - 0.17%، و0.16% - 0.15%، و0.14% - 0.13%، و0.12% - 0.11%، و0.1% - 0.09%، و0.08% - 0.07%، و0.06% - 0.05%، و0.04% - 0.03%، و0.02% - 0.01%، و0.0%.

استعراض النتائج السابقة التي تم الحصول عليها، لا شيء من عينات اللحوم المعالجة المحفوظة بالإضافة كل من النيتريت أو النترات أعتوت على كميات أكثر من الحدود المسموح بها لكل منها 0.5 ملجم/ كيلوجرام، على التوالي. وأيضاً تناولنا خطورة إضافة كل من النيتريت والنترات بكميات أعلى من الحد المسموح به في اللحوم المعالجة على الصحة العامة في مصر في هذه الأطروحة.