Prevalence and Antimicrobial Resistance of *Bacillus cereus* in Milk and Dairy Products

Rowayda Osama, Marwa F. E. Ahmed, Amir Abdulmawjood, Maha Al-Ashmawy

To cite this article: Rowayda Osama, Marwa F. E. Ahmed, Amir Abdulmawjood, Maha Al-Ashmawy. Prevalence and Antimicrobial Resistance of *Bacillus cereus* in Milk and Dairy Products. Mansoura Veterinary Medical Journal 2020; 21, 2: 11-18.

To link to this article: https://doi.org/10.35943/mvmj.2020.2.202

Published online: 25 June 2020

Submit your article to this journal

CrossMark data
Prevalence and Antimicrobial Resistance of *Bacillus cereus* in Milk and Dairy Products

Rowayda Osama¹, Marwa Ahmed², Amir Abdulmawjood³, Maha Al-Ashmawy¹

¹Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
²Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University
³Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, D-30559 Hannover, Germany

ABSTRACT

Objective: To investigate the prevalence of *Bacillus cereus* in milk and dairy products along with detection of its antibiotic sensitivity.

Design: Descriptive study.

Samples: One hundred and fifty samples of market milk, ultra high temperature milk packs (UHT), condensed milk, Milk powder, Damietta cheese, Kariehs cheese and Ras cheese.

Procedures: Samples were examined for isolation and identification of *Bacillus* spp. via direct and indirect isolation, molecular examination and antimicrobial resistance. Further molecular examination was carried out in 46 isolates to detect hblA, hblC, hblD, nheA, nheB and nheC genes

Results: The prevalence of *B. cereus* by direct isolation was 52%, 13.3 %, 10%, 8%, 44%, 0 % and 16% in market milk, ultra high temperature milk packs (UHT), condensed milk, Milk powder, Damietta cheese, Kariehs cheese and Ras cheese, respectively, whereas its prevalence by indirect isolation was 64%, 20%, 20%, 48%, 52%, 40% and 36% in market milk, ultra high temperature milk packs (UHT), condensed milk, Milk powder, Damietta cheese, Kariehs cheese and Ras cheese, respectively. *B. cereus* isolates were 100% resistant to colistin (CT), ampicillin (AM) and amoxicillin (AML). However, 83.01% were resistant to ampicillin-sulbactum (SAM), 67.9% resistant to streptomycin (S), 45.2% resistant to spiramycin (SP), 35.8% resistant to lincomycin (MY), 22.6% resistant to tetracyclin (TE), and 5.6% resistant to erythromycin (E).

A prevalence of 58.6% for hblA, hblC and hblD was recorded, while a prevalence of 86.9%, 93.4% and 89.1% for nheA, nheB and nheC was recorded.

Conclusion and clinical relevance: This study provides data on prevalence, contamination level and antibiotic sensitivity of *B. cereus* in milk and its products, suggesting a potential risk to health and the dairy industry.

Keywords: *Bacillus cereus*, milk, Dairy product, Antimicrobial susceptibility, Prevalence.

1. INTRODUCTION

The milk and its products are the most important source of food for human as they contain most of the nutrients required [1]. However, they represent a potential source of many organisms, including *B. cereus* that adversely impacts both the public health as well as the economy of the dairy industry. Environment plays an important role in milk contamination including soil, bedding, air, feed and faeces of animal and human [2]. Furthermore, poor hygiene during milking and the subsequent handling of the milk increases the risk of contamination with bacteria [3]. Different kinds of bacteria including aerobic psychrotrophic, Gram-negative bacteria, heterofermentative lactobacilli, and spore forming bacteria are considered to be the most frequent pathogens contaminating the milk [4].

Spore formation of some sort of bacteria is a method of withstand unfavorable conditions as sever dryness, subzero temperatures and boiling. Because of these facts, spores are very problematic aspects of spore forming pathogens such as *Bacillus cereus*, especially in food production and technology [5].

B. cereus is Gram-positive, motile, aerobic-to-facultative, spore-forming rod that is widely found in food and the environment. It produces spores, enterotoxins and lecithinase enzyme. It is mainly present in soil, milk, cereals, spices and other dried foodstuffs [6, 7].

As one of widely existing bacteria in the environment, *B. cereus* is a causative agent of food poisoning [8]. It has been also found that *Bacillus cereus* is widely spread in soil, food and in the human intestine [9]. Moreover, *B. cereus* has been
related food poisoning [10]. According to the European Food Safety Authority report on food-borne outbreaks, B. cereus has been found the causative agent in 77 outbreaks and 17.1% of the cases due to bacterial toxins [11].

Consequently, the current work aims to investigate the prevalence of B. cereus in milk and dairy products by using both conventional and molecular techniques along with detection of antibiotic sensitivity in order to select the appropriate antibiotics for outbreak control.

2. MATERIALS AND METHODS

2.1. Sample Collection

One hundred and fifty samples were randomly obtained including: market milk, Milk powder, Damietta cheese, Karieh cheese and Ras cheese (25 each). In addition, 30 μg antibiotics were aseptically collected from different localities of Dakahlia province, Egypt in clean, dry and sterile containers, then immediately shipped in ice box at 4°C to the laboratory for analysis at the same day of collection.

2.2. Quantitative enumeration of Bacillus species

Quantitative enumeration of Bacillus species was performed according to standard method [12]. Briefly, each sample was thoroughly mixed prior to examination, then 25 ml (or g) from each sample was aseptically added to 225 ml of nutrient broth (Oxoid, UK). From this homogenate, (10^-3) first dilution, 1 ml aliquot was taken to prepare serial dilutions till 10^6.

From each previously prepared dilution, 0.1 ml aliquot was aseptically inoculated onto B. cereus selective agar base (Oxoid, UK), supplemented with polymyxin B (50,000 IU/500 ml medium) and egg yolk emulsion (25 ml/500 ml medium) in duplicates and then the inoculated plates were incubated at 35°C for 48h. The plates were examined for characteristic B. cereus colonies characterized by being large (3-7 mm diameter), dull and turquoise to peacock blue surrounded by a good egg yolk precipitation of the same color due to lecinthinase production. Other members of the Bacillus group are mannitol positive and appeared as green or yellow colonies with no lecinthinase production. Subsequently, the average numbers of colony forming units (cfu) from the presumptive plates with 25-250 colonies were used for calculating the total cultural bacteria per gm or ml of the sample.

2.3. Qualitative detection of B. cereus

For indirect isolation of B. cereus previously prepared homogenate were incubated at 35°C for 24h then streaked on B. cereus selective agar base plates, incubated as mentioned above and examined for B. cereus colonies characteristic.

2.4. Identification of Bacillus species

The suspected Bacillus spp. colonies were purified and identified via biochemical tests such as sugar fermentation tests, Nitrate reduction test and anaerobic growth on blood agar [12].

2.5. Antimicrobial susceptibility testing

Antimicrobial susceptibility patterns of the recovered B. cereus isolates were determined by disc diffusion method using Mueller-Hinton agar [13]. Overnight-grown cultures in nutrient broth were prepared and swapped across Mueller-Hinton agar. The antibiotic discs were placed aseptically on it and incubated at 37°C for 24h. Strains were evaluated as susceptible, intermediate or resistance based on Clinical and Laboratory Standards Institute (CLSI) guidelines [14].

The following antimicrobials (manufactured by Oxoid) were used: colistin (CT) 25 μg, lincomycin (MY) 10 μg, ampicillin (AM) 25 μg, pefloxacin (PEF) 5 μg, norfloxacin (NOR) 5 μg, neomycin (N) 10 μg, ampicillin-sulbactum (SAM) 30 μg, tetracyclin (TE) 30 μg, amoxicillin (AML) 10 μg, gentamycin (GN) 30 μg, cephradine (CE) 30 μg, spiramycin (SP) 100 μg, vancomycin (VA) 30 μg, erythromycin (E) 15 μg, clindamycin (DA) 10 μg and streptomycin (S) 25 μg.

2.6. Detection of hbl and nhe toxine genes

2.6.1. DNA extraction

Pure Colonies from the overnight culture on Columbia agar plates containing sheep blood (Oxoid, Wesel, Germany) were used for DNA extraction guided by the manufacturer’s instructions for Gram-positive bacteria with the DNeasy Blood and Tissue Kit (Qiagen, Germany) following the manufacturer guidelines. Finally, DNA concentration was measured with nanodrop 2000C (Thermo Fisher Scientific, Germany) at 260 nm and stored at -20°C until used for PCR amplification.

Table 1. Oligonucleotide primers used in DNA-based PCR of Bacillus isolates.

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Primer Name</th>
<th>Primer sequences (5’-3’)</th>
<th>Gene Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hblA</td>
<td>hblA-F</td>
<td>CAAGTGGACAGTGTGATGC</td>
<td>352</td>
</tr>
<tr>
<td>hblB</td>
<td>hblB-R</td>
<td>GAAGCCCCAATATTGAG</td>
<td>750</td>
</tr>
<tr>
<td>hblC</td>
<td>hblC-F</td>
<td>AATGTCATTGCAAATCTAT</td>
<td>410</td>
</tr>
<tr>
<td>hblD</td>
<td>hblD-F</td>
<td>CTCCGCTGTTCTGCTTGAAT</td>
<td>500</td>
</tr>
<tr>
<td>nheA</td>
<td>nheA-F</td>
<td>TACGCTAAGGGGGCA</td>
<td>770</td>
</tr>
<tr>
<td>nheB</td>
<td>nheB-R</td>
<td>ATCTCAGACATTGAGGCA</td>
<td>770</td>
</tr>
<tr>
<td>nheC</td>
<td>nheC-F</td>
<td>CGGTAGGTGGTGGTCC</td>
<td>580</td>
</tr>
</tbody>
</table>

2.6.2. Toxin-genotyping

All primers in the current study were utilized according to Melnick et al. [15], and were added to the reaction mixture at a concentration of 10 pmol/μl (Table 1). Each PCR reaction mixtures (25 μl) consisted of 1 μl primer 1 (10 pmol / μl), 1 μl primer 2 (10 pmol / μl), 12.5 μl PCR master mix (Red'y'Gold Mix, Eurogentec, Köln Germany) and 8.5 μl of nuclease free water. Finally, 2 μl DNA were added to each reaction tube. The PCR was carried out in a thermal cycler (T3000 Thermocycler, Biometra, Goettingen, Germany) started with an initial denaturation step at 94°C for 5 min, followed by 35 cycles at 94°C for 30 s, 55°C for 30 s and 45 sec at 72°C followed by a final extension incubation of 72°C for 5 min. The presence of amplification products was determined by loading of 10 µl of the reaction product in a 2% agarose gel (Pequlab, Erlangen, Germany) and electrophoresis was performed for 120 min at 10 volt/cm with Tris acetate electrophoresis buffer 1xTBE buffer (Tris, Boric acid and Disodium EDTA) and a 100–2,000 bp DNA ladder (Roche, Germany) as molecular marker. B.cereus DSM 4384 and B. toyonensis BCT7112T served as positive control. Also, Staphylococcus aureus DSM 2569 was used as a negative control. Reference strains were obtained from Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Germany.

3. RESULTS

The total bacillus count in market milk, ultra high temperature milk packs (UHT), condensed milk, Milk powder, Damietta cheese, Kariesh cheese and Ras cheese were 5.4x10²±1.09x10⁵, 1.3x10⁷±9, 7x10⁴±2.3x10⁶, 4.5x10²±1.6x10⁵, 2.3x10⁷±8.5x10⁶, 1.5x10⁶±2.4x10⁵ and 3.8x10⁵±6.6x10⁴ cfu/ml or g, respectively (Table 2).

<table>
<thead>
<tr>
<th>Milk and dairy products</th>
<th>Sample no</th>
<th>+ve sample no</th>
<th>Min</th>
<th>Max</th>
<th>Mean ± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market milk</td>
<td>25</td>
<td>25</td>
<td>100%</td>
<td>4.3x10⁴</td>
<td>5.4x10⁴±1.09x10⁵</td>
</tr>
<tr>
<td>UHT</td>
<td>15</td>
<td>2</td>
<td>13.3%</td>
<td>1.0x10²</td>
<td>1.3x10⁷</td>
</tr>
<tr>
<td>Condensed milk</td>
<td>10</td>
<td>3</td>
<td>30%</td>
<td>1.0x10²</td>
<td>4.0x10⁴</td>
</tr>
<tr>
<td>Milk powder</td>
<td>25</td>
<td>17</td>
<td>68%</td>
<td>1.0x10⁷</td>
<td>4.5x10⁶±1.6x10⁵</td>
</tr>
<tr>
<td>Damietta cheese</td>
<td>25</td>
<td>21</td>
<td>84%</td>
<td>6.0x10³</td>
<td>2.3x10⁸</td>
</tr>
<tr>
<td>Kariesh cheese</td>
<td>25</td>
<td>25</td>
<td>100%</td>
<td>1.6x10⁶</td>
<td>1.5x10⁸</td>
</tr>
<tr>
<td>Ras cheese</td>
<td>25</td>
<td>25</td>
<td>100%</td>
<td>1.0x10⁴</td>
<td>3.8x10⁸</td>
</tr>
</tbody>
</table>

(UHT): ultr high temperature.

Figure 1. Typical amplification of hbl C gene, lanes 1 to 6 show positive result except number 2 and 6, 7 and 8 control positive, lane 9 control negative. M marker 100bp ladder (Promega).

Figure 2. Typical amplification of hbl A gene, lanes 1 to 6 show positive result except number 2 and 6, 7 and 8 control positive, lane 9 control negative. M marker 100bp ladder (Promega).

Figure 3. Typical amplification of hbl D gene, lanes 1 to 6 show positive result except number 2 and 6, 7 and 8 control positive, lane 9 control negative. M marker 100bp ladder (Promega).

Figure 4. Typical amplification of nhe A gene Lanes from 1 to 6 show positive result except number 2, 7 and 8 control positive, Lane 9 control negative, M marker 100bp ladder (Promega).
Figure 5. Typical amplification of nhe B gene, number 3 is positive, 7 and 8 control positive, Lane 9 control negative, M marker 100bp ladder (Promega).

Figure 6. Typical amplification of nhe C gene Lanes from 1 to 6 show positive result, 7 and 8 control positive, Lane 9 control negative, M marker 100bp ladder (Promega).

Table 3 shows the prevalence of Bacillus spp. In examined samples. The number of positive raw milk samples with Bacillus spp. was 100% (76% B. subtilis, 36% B. pumilus, 52% B. cereus and 2% B. licheniformis).

The number of positive Bacillus spp. in UHT milk samples was 20% divided in 6.6% B. subtilis, 13.3% B. cereus while both B. pumilus and B. licheniformis were not detected. In condensed milk, the positive samples for Bacillus spp. were 30% (30% B. subtilis, 10% B. pumilus, 10% B. cereus), while B. licheniformis was not detected.

In milk powder the Bacillus spp. was detected in 68% of samples (64% B. subtilis, 8% B. pumilus and 8% B. cereus). However, B. licheniformis was not detected.

Regarding the Damietta cheese samples, our work revealed that the number of positive samples for Bacillus spp. was 84% (36% B. subtilis, 12% B. pumilus, 44% B. cereus and 4% B. licheniformis).

The number of positive Bacillus spp in Kariesh cheese was 96% (84% B. subtilis and 16% B. pumilus), whereas both of B. cereus and the B. licheniformis were not detected. Moreover, samples of Ras cheese were 100% positive for Bacillus spp. (92% B. subtilis, 28% B. pumilus, 16% B. cereus and 4% B. licheniformis).

Table 4 shows that the antimicrobial resistance, 100% of B. cereus isolates were resistant to colistin, ampicillin and amoxicillin followed by 83.01% resistant to Ampicillin-Sulbactum, 67.9% resistant to Streptomycin, 45.2% resistant to Spiramycin, 35.8% resistant to Lincomycin, 22.6% resistant to Tetracyclin, 5.6% resistant to Erythromycin.

Molecular examination of 46 isolates from raw milk and Damietta cheese to hbl A, C, D and nhe A, B, C showed that 27 (58.6%) isolates were positive to hbl A, C, D genes, 35 (76%) isolates possessed the 3 components of nhe., 26 (56.5%) isolates were positive to 6 genes and one isolate negative to all genes.

Additionally, the present result show that hbl gene was detected in (58.6%) of the tested isolates.

Table 3: Comparative study between direct and indirect isolation of Bacillus spp in milk and dairy products.

D: direct isolation, ID: indirect isolation
Table 4: Antimicrobial susceptibility pattern of *B. cereus* (n=53)

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>S No</th>
<th>%</th>
<th>I No</th>
<th>%</th>
<th>R No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colistin (CT)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>100%</td>
</tr>
<tr>
<td>Lincomycin (MY)</td>
<td>-</td>
<td>34</td>
<td>64.15%</td>
<td>19</td>
<td>35.8%</td>
<td></td>
</tr>
<tr>
<td>Pefloxacin (PEF)</td>
<td>24</td>
<td>45.28%</td>
<td>29</td>
<td>54.7%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ampicillin (AM)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>100%</td>
</tr>
<tr>
<td>Norfloxacin (NOR)</td>
<td>47</td>
<td>88.6%</td>
<td>6</td>
<td>11.3%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Neomycin (N)</td>
<td>-</td>
<td>53</td>
<td>100%</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ampicillin-Sulbactum (SAM)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44</td>
<td>83.01%</td>
</tr>
<tr>
<td>Tetracyclin (TE)</td>
<td>3</td>
<td>5.6%</td>
<td>38</td>
<td>71.6%</td>
<td>12</td>
<td>22.6%</td>
</tr>
<tr>
<td>Amoxicillin (AML)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>100%</td>
</tr>
<tr>
<td>Gentamycin (CN)</td>
<td>11</td>
<td>20.7%</td>
<td>42</td>
<td>79.24%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cephradine (CE)</td>
<td>12</td>
<td>22.6%</td>
<td>41</td>
<td>77.3%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Spiramycin (SP)</td>
<td>8</td>
<td>15.09%</td>
<td>21</td>
<td>39.6%</td>
<td>24</td>
<td>45.2%</td>
</tr>
<tr>
<td>Vancomycin (VA)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>100%</td>
</tr>
<tr>
<td>Erythromycin (E)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>94.3%</td>
</tr>
<tr>
<td>Clindamycin (DA)</td>
<td>6</td>
<td>11.3%</td>
<td>47</td>
<td>88.6%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Streptomycin (S)</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>32.07%</td>
<td>36</td>
<td>67.9%</td>
</tr>
</tbody>
</table>

S: sensitive, I: intermediate, R: resistant.

Table 5. Antimicrobial susceptibility profile of *B. cereus* (n=53).

<table>
<thead>
<tr>
<th>No of isolates</th>
<th>Antimicrobial agents</th>
<th>*MAR average</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CT,MY,AM,TE,AML,SAM,E,S</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>CT,MY,AM,AML,SP,DA,S</td>
<td>0.43</td>
</tr>
<tr>
<td>3</td>
<td>CT,MY,AM,AM,AML,SP,S</td>
<td>0.43</td>
</tr>
<tr>
<td>2</td>
<td>CT,AM,SA,TE,AML,S</td>
<td>0.37</td>
</tr>
<tr>
<td>3</td>
<td>CT,MY,AM,AML,AML,SP</td>
<td>0.37</td>
</tr>
<tr>
<td>3</td>
<td>CT,AM,AML,TE,AML,S</td>
<td>0.37</td>
</tr>
<tr>
<td>5</td>
<td>CT,MY,AM,AML,AML,AML</td>
<td>0.37</td>
</tr>
<tr>
<td>3</td>
<td>CT,AM,AML,AML,AML,SP</td>
<td>0.31</td>
</tr>
<tr>
<td>5</td>
<td>CT,AM,AML,AML,AML,SP</td>
<td>0.31</td>
</tr>
<tr>
<td>2</td>
<td>CT,AML,AML,AML,AML</td>
<td>0.31</td>
</tr>
<tr>
<td>6</td>
<td>CT,AML,AML,AML,AML</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>CT,AML,AML,AML,AML</td>
<td>0.25</td>
</tr>
</tbody>
</table>

*MAR: Multiple Antimicrobial Resistance index.

Such difference may be due the high contamination of milk samples with *Bacillus* spp. *Bacillus* spp were found a common contaminant of milk due to their wide environmental distribution leading to milk contamination during production, handling and processing [22]. It should be noted that the Egyptian standard [23] stated that raw milk must be free from pathogenic organisms and their toxins.

In the current investigation, the number of positive *Bacillus* spp in UHT milk samples was 20% (6.6% *B. subtilis*, 13.3% *B. cereus*), while both *B. pumilus* and *B. lichenformis* were not detected in any of samples. This finding indicates contamination of UHT milk. This may occur due to the presence of resistant organisms that can tolerate the process of heat treatment or by contamination with spoilage organisms after heat treatment [24]. The detection rate of *B. cereus* in UHT milk in our study was nearly similar to that obtained by other studies that reported a rate of 13.8% [18], 18.3% [25] and 17.8% [26]. On the other hand, a study reported a higher incidence (61.3%) [27]. According to the Egyptian standard [28], UHT milk must be free from pathogenic organisms and their toxins.

The present result revealed that the number of positive Bacillus samples in condensed milk was 30%, (30% *B. subtilis*, 10% *B. pumilus*, 10% *B. cereus*), while *B. lichenformis* was not detected. Our detection rate of *Bacillus cereus* (10%) was lower than that of 56% obtained in another work [29], whereas another study [30] could not detect it in their samples. Moreover, Egyptian standard [31] stated that condensed milk must be free from pathogenic organisms and their toxins.

The current study revealed that the number of positive samples for *Bacillus* spp. in milk powder was 68% divided into 64% *B. subtilis*, 8% *B. pumilus* and 8% *B. cereus*. However, *B. lichenformis* was not detected. Similarly, two studies obtained nearly similar results regarding milk powder contamination by *B. cereus* which were 10.7% [32] and 8.3% [33]. On the other hand, higher percentages of 15% [19], 27.9% [34] and 42% [35] were reported. Moreover, the current finding doesn’t meet the other requirement of Egyptian standard which indicates that the milk powder must be free from pathogenic organisms and their toxins.

The detection of *B. cereus* in milk powder samples maybe explained by the use of pasteurization and spray drying during milk powder manufacture causes induction of germination and outgrowth of *B. cereus* spores [36].

Regarding the Damietta cheese samples, our study revealed that the number of positive samples for *Bacillus* spp was 84% (36% *B. subtilis*, 12% *B. pumilus*, 44% *B. cereus* and 4% *B. lichenformis*). *B. cereus* was found in 44% of the examined samples while other studies reported lower incidences of 20% [37] and 33.3% [38]. However, another study could not detect it in the examined samples [39]. Higher incidence of 50% was also recorded [40]. Interestingly, Egyptian standard [41] stated...
that soft cheeses like damietta cheese must be free from pathogenic organisms and their toxins.

In case of karish cheese samples, the number of positive *Bacillus* spp. was 96% (84% *B. subtilis* and 16% *B. pumilus*), whereas both the *B. cereus* and the *B. licheniformis* were not detected. The extent of *B. cereus* contamination depends on the effectiveness of hygienic measures applied during processing, handling and distribution of milk products [42]. The absence of *B. cereus* in our karish cheese samples comes in agreement with other reports [39, 41]. Such absence is explained by acidity karish cheese [43]. Contradictory, other studies reported percentages of 28% [44] and 10% [37]. Additionally, samples of ras cheese were 100% positive for *Bacillus* spp. (92% *B. subtilis*, 28% *B. pumilus*, 16% *B. cereus* and 4% *B. licheniformis*).

Compared to our study results, both higher (48%) and lower (7%) incidences of *B. cereus* were detected in other studies [45, 46]. Generally, detection of *B. cereus* in ras cheese is inconsistent with the Egyptian standard [47] which stated that hard cheese must be free from pathogenic organisms and their toxins.

Regarding the antimicrobial resistance, 100% of *B. cereus* isolates were resistant to colistin, ampicillin and amoxicillin followed by 83.01% resistant to Ampicillin-Sulbactum, 67.9% resistant to Streptomycin, 45.2% resistant to Spiramycin, 35.8% resistant to Lincomysin, 22.6% resistant to Tetracyclin, 5.6% resistant to Erythromycin which agree with Kim, Cho [48] who found that all *B. cereus* strains were resistant to β-lactam including Ampicillin, Penicillin and Amoxicillin and susceptible to Ciprofloxacin, Gentamycin, Tetracycline and Vancomycin. Therefore, the use β-lactam is ineffective for *B. cereus* infection, but use Norfloxacin and Ciprofloxacin may be of value.

Molecular examination of 46 isolates from raw milk and damietta cheese to hbl A, C, D and nhe A, B, C shows that 27 (58.6%) isolates were positive to hbl A, C, D genes, 35 (76%) isolates posses the 3 components of nhe., 26 (56.5%) isolates were positive to 6 genes and one isolate negative to all genes. *B. cereus* secretes a group of enterotoxins which cause food poisoning symptoms (diarrheal type). These enterotoxins are hemolysin BL (hbl), nonhemolytic enterotoxin (nhe) and cytotoxin K (CytK) [49] hbl is considered to be the first *B. cereus* enterotoxin to be characterized [50, 51]. Nonhemolytic enterotoxin nhe was characterized in Norway after an outbreak of food poisoning involving 152 people [51].

Nearly, all tested *B. cereus* strains produce nhe, the finding is in agreement with our results, which show that 70% of isolates were nhe gene positive. Other studies [52, 53] found that 100% of isolates were positive to nhe gene, while it was also found that only less than 54.8% of isolates were positive to nhe gene [54].

The present result show that hbl gene was detected in 58.6% of the tested isolates, whereas another study [52] found hbl genes were also highly frequent in the tested strains (92%). In this study, all of the tested isolates contained at least one of the six genes tested indicating the high enterotoxigenicity of *B. cereus* and a potential risk to milk and dairy.

Conclusion

The results of the present study indicate that *Bacillus* spp. are established in milk and dairy products. Therefore, it is recommended use of high quality raw milk for the manufacture of milk products, proper cleaning and sanitization of equipment, employment healthy workers with health certificate in dairy industry, and effective sanitation in dairy industry in order to minimize contamination of milk and dairy products.

Conflict of interest statement

The authors declare that there is no any conflict of interest in the current research work.

Research Ethics Committee permission

The current research work was conducted according to standards of Research Ethics committee, Faculty of Veterinary Medicine, Mansoura University.

Authors’ contribution

Rowayda osama performed the experiment and drafted the MS. Marwa F. E. ahmed and Amir Abdulmawjood performed the molecular experiment in Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Germany. Maha Al-Ashmawy supervised the whole research work and revised the MS.

5. REFERENCES

[53] Andersen Borge GI, Skeie M, Sørhaug T, Langsrud T, Granum PE. Growth and toxin profiles of Bacillus cereus isolated from different food sources.